
 1

CometLib for Internet Basic Users

This document presumes that the reader is already familiar with Comet Internet Basic (IB) and the
Comet file system. If you are not familiar with either of these concepts, please refer to the
document “CometLib for Non-Internet Basic Users”

For those of you who are already proficient at programming the Comet file system, the use of
CometLib will require that you also acquire and learn how to use Microsoft Visual Basic (VB). Once
you gain an understanding of how to use VB you should have little difficulty understanding how to
use the features of CometLib.

This document will point out changes you must adapt to in order to access Comet files using
CometLib.

Numerics

Internet Basic supports fixed-point numeric values with a maximum length of 16 and a maximum
precision of 15. VB Is limited to at most 15 digits of significant and precision digits. Place close
attention to the “Numeric Data Limits” section of the CometLib Library Reference.

Formatting (or lack thereof)

Internet Basic provides the ability to layout data records using the FORMAT statement. This is NOT
the case with CometLib. Instead, you place data into a record at a specified position on a field-by-
field basis. Field data is retrieved from a record in a similar manner. Methods have been provided
to help ensure data is properly fielded.

Exception Handling

Comet file system functions use an exception (EXCP=) mechanism to specify the label of an error
handling routine. Not all COM compatible languages have such a mechanism so CometLib handles
errors in a more generalized manner.

True/False Values

Internet Basic pre-defines the constants TRUE (1) and FALSE (0) for use by a IB program. In VB
the constant True is actually equal to –1 and False is equal to 0. It is very important that you
understand that any reference to a Boolean value of True or False must not be mistaken for 1 or 0.
To avoid possible programming errors it is recommended that you always use the appropriate
symbolic constant in your code.

 2

File System Functions

For the most part, the Comet file system functions you already use on a day-to-day basis are
provided by CometLib. In some cases minor name changes have been made to account for the
varying nature of certain file system functions.

For Example:

In IB when you want to create a file you simply specify a K, S, or T to indicate the file type. In
CometLib, you must use the method that corresponds to the file type you want to create.

Internet Basic

CREATE <FileName>, <RecSize>, K, <KeySize>, Dir=<Directory>

CometLib

CreateKeyedFile(<FileName>, <Directory>, <RecSize>, <KeySize>)

The following is a list of Comet functions that will be substantially different as CometLib methods.

CREATE

CreateKeyedFile
CreateSequentialFile
CreateTextFile

READ/WRITE/EXTRACT/INQUIRE – for moving sequentially through a file

ReadNext
WriteNext
ExtractNext
InquireNext

KEY

NextKey

LOCK/UNLOCK

LockFile
UnLockFile

GETHANDLES

GetDosHandles

FSTAT

FileStatus

DSTAT

DabStat

 3

FILE – FORWARD/REVERSE/EOF/BOF

Forward
Reverse
EndFile
BeginFile

Please refer to the “CometLib Library Reference” for additional information on CometLib and Comet
file system features.

 4

CometLib for Non-Internet Basic Users

The Comet file system consists of a collection of distributed folders that each contains varying
combinations of Comet file types. A Comet folder can be potentially located on any computer
connected to a Local Area Network that is serviced by the Comet network file server, CFileServe.
Client access to CFileServe is facilitated through the use of CometLib, a COM server DLL that is
installed on the client computer. Also, in order for CometLib to be accessible to a client application,
Comet must first be installed and running on the same computer. Once Comet is running,
CometLib can be used by an application to gain access to any of the configured Comet folders/files.

Comet Folders

As was earlier stated, Comet files are stored in folders located on various file servers. Any folder
that will contain a Comet file must be “registered” in advance with Comet. This is accomplished
through the use of a configuration .INI file that must be processed by the Comet utility, SysGen.
The person who performs the Comet installation is responsible for ensuring that any needed folders
are configured for access by Comet. When a folder is configured for use by Comet it is assigned a
short (up to 3 characters) name that will be used by CometLib to gain access to any files contained
in that folder. To simplify this document, we will refer to the short folder name simply as a
“Directory.”

For Example:

Const Lun = 1
Const FileName = “MyFile”
Const Directory = “Dat”
DB.Open (Lun, FileName, Directory)

Comet Files

Comet filenames for non-keyed files follow the 8.3 DOS file format of <filename>.<3 byte
extension>. For keyed files, the filename is limited to 8 characters with no file extension.

CometLib provides several input/output methods designed for working with Comet files. To identify
a file that has been opened, CometLib uses the concept of a logical-unit-number (LUN). Unlike a
file “handle” which is assigned by a file system function, a LUN is assigned in advance by the user
of the file. A LUN must have a value from 0 to 49, allowing a program to have up to 50 files opened
simultaneously.

The Comet file system supports the following three file types:

• Text files
• Sequential files
• Keyed files

 5

Text files are standard ASCII data files containing text records (up to 8,000 bytes per record).
These records are stored in the order in which they are written to the file, and are accessible in the
same order (i.e., sequential order). Text files are typically used to import and export standard ASCII
data. They are also used to store IB source programs.

Sequential files are fixed record size files (up to 8,000 bytes) with fixed field sizes. Records are
stored in the order they are written, and may be retrieved in sequential order (first record to last) as
well as direct order (using a numeric index to represent the record number in the file). Hence,
sequential files are sometimes referred to as “indexed sequential” files. Sequential files are
commonly used as temporary transaction files.

Keyed files provide direct access to data records. Keyed files have fixed record sizes (up to 8,000
bytes) with fixed field sizes. The key for a keyed file is a string field up to 64 characters long.
Records are stored in the order they are written, while the keys are stored in ASCII order. Each key
includes a pointer to the associated data record. Records may be retrieved in random order (using
the key field) or in key-sequential (ASCII) order.

File/Record Position - Sequential Access

CFileServe keeps track of your program’s current position (record pointer) within a data file. When
a program opens a data file, the record pointer points to the beginning of the file. After the program
reads the first record, the record pointer points to the second record. Subsequent reading by this
program moves this pointer to subsequent records. If the program reaches the end of the file and
tries to read another record an error will occur. If the program closes the file and opens it again, the
record pointer is positioned back to the first record in the file.

Here’s a code excerpt that demonstrates sequential reading from a file. This program opens the file
“Contacts” from the “Bas” directory. It reads a record and prints the first 80 bytes to the main
program form, and repeats this process until all of the records have been read/printed.

DB.Open (1, "Contacts", "Bas")
While (DB.ReadNext(Lun))
 RecData = DB.GetRecField(1, 0, 80)
 Print RecData
Wend
DB.Close(1)

File/Record Position - Keyed Access (Keyed Files Only)

Comet keyed files can also be accessed using a record “key”. A key is a string of characters (up to
64 bytes long) that uniquely identifies a record in a key file. A record key can be used to randomly
access a record without the need to traverse through the entire file.

 6

Here’s a code excerpt that demonstrates reading a record from a file using keyed access. This
program opens the file “Contacts” from the “Bas” directory. It reads a record and prints the first 80
bytes to the main program form.

DB.Open (Lun, "Contacts", "Bas")
DB.Read (Lun, “john”))
RecData = DB.GetRecField(Lun, 0, 80)
Print RecData
DB.Close(Lun)

Compatibility with the Internet Basic Programming Language

Comet files may contain data of any kind. A CometLib record is represented as a string up to 8000
bytes long. Further limitations are placed on this data if it is meant to be shared with Internet Basic
programs. The following paragraphs describe those limitations.

Record Layout (Fields)

Internet Basic record data is organized in fixed-length fields. That is, every field must have a fixed
position and length that is known to the application accessing a file. Field data is stored as ASCII
strings with no added delimiters. String fields are limited to 254 characters each and numeric fields
are limited to 18 (16 + 2 extra characters for a sign and decimal) characters each.

Numeric Data

Internet Basic numeric data is expressed as an unpacked decimal fixed length field with fixed
precision. It is up to the programmer to ensure that data placed into a field conforms exactly to the
format required by a Comet program. Techniques will be described in the “CometLib Library
Reference” document to aid with the formatting of numeric data.

Please refer to the “CometLib Library Reference” for additional information on CometLib and Comet
file system features.

 7

CometLib Library Reference – Visual Basic

Before you begin using CometLib it is not imperative that you have a good understanding of
Microsoft Visual Basic. CometLib is useable by any programming language that can link to a COM
server object. All code examples associated with this document will be presented in Microsoft Visual
Basic 6.0. This is for illustrative purposes only. If you have an understanding of object programming,
by reviewing the VB examples, you should be able to extrapolate into the language of your choice.

Getting Started

Before you can use CometLib in a VB program you must first add it to the VB project. This is
accomplished by opening the “References” dialog located in the “Project” menu. Locate “CometLib”
in the dialog and select/check it to make it available to your program. A reminder - this procedure
applies only to VB 6.0. In VB.NET (and other versions of VB), these steps may be somewhat
different.

You can familiarize yourself with the objects, methods, properties and Enums of CometLib by
opening the “Object Browser” dialog located in the “View” menu. In the combo-box at the top of the
dialog choose “CometLib”. You should now see three objects listed: CometErrors, CometFiles, and
CometFileStatus. By selecting an object you will be presented a list of each method, property, or
Enum for the object.

Making a Connection to Comet

Before using any of the CometLib file-system functions you must first declare, construct and
initialize a CometFiles object in your program.

 ‘ Variable to hold a CometFile object

Dim DB As CometLib.CometFiles

‘ Create a CometLib object and connect to Comet
Set DB = New CometFiles
DB.Initialize “ContactMgr”

Generally, a program would define (Dim) the CometFiles object in the global section of a program
and perform the initialization in the program startup routine (Form Load).

Ending a Connection to Comet

When you are done using the CometFiles object (or for that matter, any object) it is a good practice
to explicitly end the connection to Comet and destroy the object.

 ‘ Terminate connection with Comet and delete object
 DB.Terminate

 8

 Set DB = Nothing

Generally, a program would place the termination code in the program shutdown routine (Form
Unload).

Error Handling

Error handling for methods involved in the creation/destruction of a CometFiles object is
accomplished through the use of the standard VB error handling mechanism. This technique is also
used for the FileStatus, DabStat, PutRecField, and GetRecField methods. All other file system
methods can be tested for an error by examining the method return value. In these cases the return
value of False for Boolean variables, -1 for Numeric variables, or a Null String (“”) for string
variables would indicate an error.

Sub Main()

 ‘ Go here if an error occurs during startup
 On Error Goto StartupError

 ‘ Variable to hold a CometFiles object

Dim DB As CometLib.CometFiles

‘ Create a CometLib object and connect to Comet
Set DB = New CometFiles
DB.Initialize “ContactMgr”

 ‘ Open returns True if successful else False if error

If (DB.Open(1, “Contacts”, “Bas”)) Then
 .

 . Do some file work
.
 DB.Close (1)
Else

 ‘ Report the error and exit program
MsgBox “Comet Error #” & DB.LastCometError & _

 “: ” & DB.GetCometExcpString(DB.LastCometError)
End If

 Goto FuncExit

StartupError:
 ‘ Report the error and abort program

MsgBox Err.Description, , "Startup Error"
End

FuncExit:
 ‘ Terminate connection with Comet and delete object
 DB.Terminate
 Set DB = Nothing
End Sub

 9

Numeric Data Limits

VB supports two type of floating point variables, single precision and double precision. For the
purposes of storing decimal numeric data, the maximum number of digits retained for single
precision variables will be 6 digits and for double precision variables it will be 15 digits.
These limits are specified such that a floating-point number with the maximum specified number of
decimal digits can be rounded into a floating-point representation and back without loss of precision.
That means you will be able to represent your decimal values in the range –999999 to 999999 for
single precision and –999999999999999 to 999999999999999 for double precision without losing
decimal precision. The smallest decimal that values you can represent in VB are affected in a
similar manner. For single precision variables the smallest value would be 0.000001 for double
precision it would be 0.000000000000001.

Formatting Numeric Data

Internet Basic numeric data is expressed as fixed length fields with fixed precision. The data is
stored in a right-justified manner with the sign (‘ ‘ or ‘-‘) placed to the right of the field. It is up to the
programmer to ensure that data placed into a field conforms exactly to the format required by an
Internet Basic program. To facilitate correct numeric formatting, the method StrNumToIB can be
used to format the field based upon a supplied length and precision.

 10

CometLib - Quick Reference

CometFiles Object - Methods

Initialization/Termination

Sub Initialize(ClientID As String, [TaskID As Long = -1], [DirCount As Long = 50],
 [FileCount As Long = 51])
Sub Terminate()

File Create/Erase/Rename/Status

Function CreateKeyedFile(FileName As String, Directory As String,
 RecordSize As Long, KeySize As Long) As Boolean
Function CreateSequentialFile(FileName As String, Directory As String,
 RecordSize As Long) As Boolean
Function CreateTextFile(FileName As String, Directory As String,
 RecordSize As Long) As Boolean
Function Erase(FileName As String, Directory As String) As Boolean
Function Rename(FromFileName As String, FromDirectory As String,
 ToFileName As String, ToDirectory As String) As Boolean
Function FileStatus(FileName As String, Directory As String)
 As CometFileStat

File Open/Close

Function Open(Lun As Long, FileName As String, Directory As String) As Boolean
Function Close(Lun As Long) As Boolean

Record Read/Write/Delete

Function Delete(Lun As Long, Key As String) As Boolean
Function Extract(Lun As Long, RecordKey) As Boolean
Function ExtractNext(Lun As Long) As Boolean
Function Inquire(Lun As Long, RecordKey) As Boolean
Function InquireNext(Lun As Long) As Boolean
Function Read(Lun As Long, RecordKey) As Boolean
Function ReadNext(Lun As Long) As Boolean
Function Insert(Lun As Long, RecordKey As String) As Boolean
Function ReWrite(Lun As Long, RecordKey As String) As Boolean
Function Write(Lun As Long, RecordKey) As Boolean
Function WriteNext(Lun As Long) As Boolean

File Get/Set Position

Function FirstKey(Lun As Long) As String
Function LastKey(Lun As Long) As String
Function NextKey(Lun As Long) As String
Function PrevKey(Lun As Long) As String
Function BeginFile(Lun As Long) As Boolean
Function EndFile(Lun As Long) As Boolean

 11

Function Position(Lun As Long, RecordKey) As Boolean

File Control

Function LockFile(Lun As Long) As Boolean
Function UnlockFile(Lun As Long) As Boolean
Function Forward(Lun As Long) As Boolean
Function Reverse(Lun As Long) As Boolean

File Information

Function GetDosHandles(Lun As Long, KeyHandle As Long) As Long
Function GetFileType(Lun As Long) As Long
Function GetKeySize(Lun As Long) As Long
Function GetRecordSize(Lun As Long) As Long

Data Formatting

Function IBToStrNum(IBStrNum As String) As String)
Function StrNumToIB(StrNum As String, Length As Long, Precision As Long) As String
Function WriteInit(Lun As Long) As Boolean
Function GetRecField(Lun As Long, FieldPosition As Long, FieldLength As Long)
 As String
Sub PutRecField(Lun As Long, FieldData As String, FieldPosition As Long,
 FieldLength As Long)

Directory Status

Function DabStat(Dab As Long, Path As String) As String

Error Handling

Function GetCometExcpString(Excp As Long) As String
Function GetLastErrorString() As String

Properties

IsConnected As Boolean (read-only)
LastCometError As Long (read-only)
LastError As Long (read-only)

 12

CometFileStat Object

Properties

AccessDate As String (read-only)
Attributes As Long (read-only)
CreateDate As String (read-only)
DataFileSize As Long (read-only)
Directory As String (read-only)
ExtractCount As Long (read-only)
FileType As Long (read-only)
KeyFileSize As Long (read-only)
KeySize As Long (read-only)
Locked As Boolean (read-only)
ModifyDate As String (read-only)
NextFile As String (read-only)
RecordSize As Long (read-only)
UserCount As Long (read-only)

 13

CometErrors Object

Enums

excp02EndOfFile
excp03DiskFull
excp04KeyRequired
excp05DirRequired
excp06NoDiskSpace
excp07LockViolation
excp10FileNotAvailable
excp11FileNotFound
excp12FileExists
excp13DOSFileExists
excp24RenameSameDisk
excp26DOSEndOfFile
excp27DOSCallError
excp28WriteProtected
excp29DriverError
excp30DeviceInoperable
excp31DeviceUnavailable
excp32KeyNotFound
excp33Extracted
excp34LunInUse
excp35NoFileOpen
excp36FileIsOpen
excp37NoPermission
excp38InvalidFunction
excp43NoExtensionAllowed
excp44BufferOverflow
excp45InvalidParameter
excp46NonNumericData
excp47ParamTooLarge
excp48InvalidCreateParameter
excp49InvalidLun
excp53InvalidFileAccess
excp54InvalidFileFunction
excp56KeyFoundOnInsert

 14

CometFileTypes Object

Enums

ftSequential
ftContiguous
ftKeyed
ftText
ftProgram

 15

CometLibErrors Object

Enums

clibNoError = 0 ‘ No error
clibNoFileSystem = 1 ‘ CFAM not running
clibLoginRefused = 2 ‘ Login refused by CFAM
clibSharedMemory = 3 ‘ Couldn't create shared memory
clibControlWinError = 4 ‘ Error creating control window
clibBufferBusy = 5 ‘ Buffer was busy during send
clibLinkTimeout = 6 ‘ CFAM Link timeout error - gone?
clibNoCOnnection = 7 ‘ Connection to CFAM not established
clibShortBuffer = 8 ‘ Insufficient bytes returned from CFAM
clibCometError = 9 ‘ A Comet FS error occurred
clibDOSError = 10 ‘ Error in a DOS function
clibUserAborted = 11 ‘ User (app) sent an abort
clibLoginFailed = 12 ‘ Login refused because Comet is not connected
clibNoLicense = 13 ‘ CometLib server is not licensed

 16

CometLib - Detailed Reference

CometFiles Object

Methods

Initialization/Termination

Sub Initialize(ClientID As String, [TaskID As Long = -1],
 [DirCount As Long = 50], [FileCount As Long = 51])

This method established a connection to the Comet file system and establishes the
initial operating parameters required by the application.

Where:

ClientID is a name that will be used to identify this application instance. This
identifier will be visible to other administrative-type applications.

TaskID is the number of the Comet task whose Directories you wish to inherit. If
this value is –1 (default) the you will have access up to the first 50 configured
Directories. Unlike a Comet partition #, the TaskID is always 0-based. To
determine the TaskID for a Comet partition you subtract the first Comet partition
from the desired partition #. For instance, if your first partition is P05 and
you want the Directories for P10, you would subtract the first partition # (5)
from the target partition # (10) to reach a target TaskID of 5.

DirCount specifies the maximum # (default is 50) of Directories your program can
support. THIS FEATURE IS FOR FUTURE USE.

FileCount specifies the maximum # (default 51) of files (LUN’s) that your program
will have open at the same time. THIS FEATURE IS FOR FUTURE USE.

Sub Terminate()

This method breaks a connection to the Comet file system causing any open files to be
closed and any other resources to be returned to the operating system.

 17

File Create/Erase/Rename/Status

Create

Function CreateKeyedFile(FileName As String, Directory As String,
 RecordSize As Long, KeySize As Long) As Boolean
Function CreateSequentialFile(FileName As String, Directory As String,
 RecordSize As Long) As Boolean
Function CreateTextFile(FileName As String, Directory As String,
 RecordSize As Long) As Boolean

Each of these functions creates a file of the specified type.

Where:

FileName for sequential and text files use the DOS 8.3 format while keyed files
are restricted to 8 characters only (the extension is reserved for internal use).

Directory specifies the directory in which the file is to be created.

RecordSize is the number of characters to be stored in each record. For all file
types the maximum record size is 8000. The minimum record size for sequential and
text files is 1 and for keyed files 0 (key-only files).

KeySize (key-files only) specifies the number of characters that will be used to
represent each record. The minimum key size is 1 and the maximum is 64.

Erase

Function Erase(FileName As String, Directory As String) As Boolean

This function erases the specified file from the specified directory. If no Directory
is specified, CometLib will search through all configured directories until it finds a
file with the specified name. Erased file are NOT put in to the system trash-can. Once
a file has been erased it cannot be recovered.

Where:

FileName is the name of the file to be erased.

Directory specifies the directory in which the file resides.

Rename

Function Rename(FromFileName As String, FromDirectory As String,
 ToFileName As String, ToDirectory As String) As Boolean

This function renames the specified file to a new filename and directory. If no
FromDirectory is specified, CometLib will search through all configured directories
until it finds a file with the specified name. If no ToDirectory is specified CometLib
will use the FromDirectory. If ToDirectory is different than FromDirectory the
respective drive letters must be the same.

 18

Where:

FromFileName is the name of the file to be renamed.

FromDirectory specifies the directory in which the FromFileName resides.

ToFileName is the new name of the file being renamed.

ToDirectory specifies the directory in which ToFileName resides.

Status

Function FileStatus(FileName As String, Directory As String)
 As CometFileStat

This function returns a CometFileStat object which contains information about the
specified file. If no FromDirectory is specified, CometLib will search through all
configured directories until it finds a file with the specified name. See the section
on the CometFileStat object for more information regarding file status.

Where:

FileName is the name of the file whose information is desired.

Directory specifies the directory in which the file resides.

 19

File Open/Close

Open

Function Open(Lun As Long, FileName As String, Directory As String)
 As Boolean

This function opens the specified file in the specified directory. If no Directory is
specified, CometLib will search through all configured directories until it finds a file
with the specified name.

Where:

Lun is the LUN under which the file is to be opened.

FileName is the name of the file to be opened.

Directory specifies the directory in which the file resides.

Close

Function Close(Lun As Long) As Boolean

This function closes a previously opened file.

Where:

Lun is the LUN under which the file was opened.

 20

Record Reading/Writing/Deleting

Before continuing on with this section a word about data formatting is in order. As was earlier
stated, Comet files are designed to maintain data in records of fixed-length fields. That is, the
program that reads and/or writes data to a Comet file must be aware of the position and length of
each and every field that it will read or modify. The Comet runtime has features built into it that
allow record fields to be laid out in a ordered list (Format statement) that determines the field
positions by the order and length of each variable contained in the list. In addition, the Comet
runtime Format statement automatically handles the formatting of fields that contain numeric data
represented in a program as numeric variables. CometLib does not have such a mechanism so it
will remain up to the programmer to ensure that fields are laid out in a manner that will be
compatible with the Comet runtime. To this end CometLib provides a handful of methods that can
be used to aid in the layout and formatting of field data so that it will remain compatible with a
Internet Basic program. If you are going to write a program that does not need to maintain
compatibility with the Comet runtime you can format your data in whatever manner you choose.
The following is a list of the methods that you can use to exchange record field data.

IBToStrNum converts a Internet Basic numeric string into a VB numeric string.
StrNumToIB converts a VB numeric string into a Internet Basic numeric string.
WriteInit clears the record buffer prior to storing write data in the buffer.
PutRecField places a VB string into the record buffer.
GetRecField retrieves a string from the record buffer.

Read/ReadNext

Function Read(Lun As Long, RecordKey) As Boolean
Function ReadNext(Lun As Long) As Boolean

This method reads the record identified by the specified RecordKey (Read) or the next
record in the file (ReadNext). Use the method GetRecField to retrieve data from the
record buffer.

Where:

Lun is the LUN under which the file was opened.

RecordKey is the String or Numeric index that identifies the record.

For Example:

 ‘ If read is successful – get first 3 bytes from record

If (Read(Lun, “T00”))
 FieldData = GetFieldRec(Lun, 0, 3)
End If

Inquire/InquireNext

Function Inquire(Lun As Long, RecordKey) As Boolean

 21

Function InquireNext(Lun As Long) As Boolean

An Inquire is essentially the same as a read with the following exception. Unlike a
read which will get an error (excp33Extracted) if the specified record is extracted
(locked) by another program, the Inquire method will complete successfully even if the
record is extracted.

Extract/ExtractNext

Function Extract(Lun As Long, RecordKey) As Boolean
Function ExtractNext(Lun As Long) As Boolean

A Extract is essentially the same as a read with the following exception. When a
Extract is performed on a record the successfully read record will remain locked to
other programs until the extract is released by another file operation.

Write/WriteNext

Function Write(Lun As Long, RecordKey) As Boolean
Function WriteNext(Lun As Long) As Boolean

The Write method writes the contents of the record buffer using the specified RecordKey
(Write) or the next record position (WriteNext). Prior to performing a Write, the data
must be placed into the record buffer using the PutRecField method.

Where:

Lun is the LUN under which the file was opened.

RecordKey is the String or Numeric (write only) index that identifies the record.

For Example:

 WriteInit(Lun) ‘ Clear record buffer

PutRecField(Lun, “T00”, 0, 3) ‘ Put copy of Key in record
PutRecField(Lun, “LP1”, 3, 3) ‘ This terminal uses LP1
Write(Lun, “T00”)

ReWrite

Function ReWrite(Lun As Long, RecordKey As String) As Boolean

The ReWrite method is essentially the same as a write except that if the record does not
already exist an error will occur.

Insert

Function Insert(Lun As Long, RecordKey As String) As Boolean

The Insert method is essentially the same as a write except that if the record already
exist an error will occur.

 22

Delete

Function Delete(Lun As Long, Key As String) As Boolean

The Delete method removes the record specified by RecordKey from a file.

Where:

Lun is the LUN under which the file was opened.

RecordKey is the String that identifies the record.

 23

FirstKey/LastKey/NextKey/PrevKey

Function FirstKey(Lun As Long) As String
Function LastKey(Lun As Long) As String
Function NextKey(Lun As Long) As String
Function PrevKey(Lun As Long) As String

These methods each return their respective RecordKey for the specified file.

Where:

Lun is the LUN under which the file was opened.

For Example:

 ‘ If next record is a “Terminal” record then read it
 While (Left(NextKey(Lun), 1) = “T”)
 ReadNext(Lun)
 .
 . Process record data
 .
 Wend

BeginFile/EndFile

Function BeginFile(Lun As Long) As Boolean
Function EndFile(Lun As Long) As Boolean

These methods each positions the file record pointer to their respective positions.

Where:

Lun is the LUN under which the file was opened.

For Example:

 ‘ If End Of File then start second pass
 If (ReadNext(Lun))
 .
 . ‘ Process record
 .
 Else ‘ Exception occurred
 If (LastCometError = excp02EndOfFile)
 BeginFile(Lun)
 Pass = 2
 Else
 MsgBox GetLastErrorString
 End
 End If
 End If

Position

 24

Function Position(Lun As Long, RecordKey) As Boolean

This method set the current record position to the specified RecordKey. If the
specified RecordKey does not exist (or you reach the end of file), no error will be
reported and the record pointer will be set to the next higher key in the file. You can
use the NextKey method to determine your current position.

Where:

Lun is the LUN under which the file was opened.

RecordKey is the String or Numeric index that identifies the record.

 25

File Control

LockFile/UnLockFile/Forward/Reverse

Function LockFile(Lun As Long) As Boolean
Function UnlockFile(Lun As Long) As Boolean
Function Forward(Lun As Long) As Boolean
Function Reverse(Lun As Long) As Boolean

These methods each perform their respective function for the specified file.

Where:

Lun is the LUN under which the file was opened.

LockFile places a system-wide file lock on the specified file making it inaccessible to
other programs. If the file cannot be locked because it has been opened by another user
an error excp07LockViolation will be generated.

UnlockFile removes a lock from a previously locked file.

Reverse causes the file record pointer to move in descending direction during
read/write/position operations.

Forward causes the file record pointer to move in the default ascending direction during
read/write/position operations.

 26

File Information

GetFileType/GetKeySize/GetRecordSize

Function GetFileType(Lun As Long) As Long
Function GetKeySize(Lun As Long) As Long
Function GetRecordSize(Lun As Long) As Long

Each of these methods return their respective piece of information about the specified
file.

Where:

Lun is the LUN under which the file was opened.

For Example:

If (GetFileType(Lun) = ftKeyed)
 MsgBox “This is a keyed file”
End If

 27

Data Formatting

WriteInit

Function WriteInit(Lun As Long) As Boolean

This method clears the file record buffer to all spaces. Call this method prior to
placing data into the record buffer. In cases where you want to perform an update that
involves changing only part of a record, you would NOT use this method. Instead, you
would first read the record you want to update, change the field, and then write the
record back to the file.

PutRecField

Sub PutRecField(Lun As Long, FieldData As String, FieldPosition As Long,
 FieldLength As Long)

This method copies the specified string into the record buffer at the specified
FieldPosition for the specified FieldLength. If the specified string is shorter than
the indicated FieldLength, the field is padded with spaces.

For Example:

 WriteInit(Lun)
 PutRecField(Lun, “T00”, 0, 3) ‘ Put terminal# (key) into begin of record
 PutRecField(Lun, “LP1”, 3, 3) ‘ Printer name is next
 Write(Lun, “T00”) ‘ Write the record using terminal as key

GetRecField
Function GetRecField(Lun As Long, FieldPosition As Long, FieldLength As Long,
 As String

This method retrieves a field from the record buffer at the specified FieldPosition for
the specified FieldLength. When using this method keep in mind that any spaces added to
pad the field will also be returned in the string.

For Example:

 If (Read(Lun, “T00”))
 TerminalNum = GetRecField(0, 3) ‘ Get terminal# (same as key)
 PrinterName = GetRecField(3, 3) ‘ Get printer name
 End If

StrNumToIB

Function StrNumToIB(StrNum As String, Length As Long, Precision As Long) As String

This method converts a VB string numeric into a Internet Basic compatible string
numeric. The conversion provides any necessary padding or precision and also moves the
sign to the right. This method should always be used when writing data to a file that
will also be read from an Internet Basic program. If an error occurs during conversion

 28

a NULL (“”) string will be returned and LastCometError will indicate the reason for the
error.

For Example:

Dim MyNum As Double
Dim MyIBNumStr As String
Const IBNumLen = 7 ‘ Length of numeric
Const IBNumPrec = 4 ‘ Precision of numeric
Const IBNumFieldLen = IBNumLen+2 ‘ Allow room for decimal point And sign

 MyNum = -123.45
 MyIBNumStr = StrNumToIB(Str(MyNum), IBNumLen, IBNumPrec)

If (MyIBNumStr <> “”) Then
 ‘ Resulting string should be “123.4500-“
 PutRecField(Lun, MyIBNumStr, 0, IBNumFieldLen)
End If

IBToStrNum

Function IBToStrNum(IBStrNum As String) As String

This method will convert a Internet Basic numeric string into a VB numeric string. The
conversion is very simple in that it merely moves the sign to the left and strips blank
spaces. This method should always be used when reading data from a file that was
written by an Internet Basic program. If an error occurs during conversion a NULL (“”)
string will be returned and LastCometError will indicate the reason for the error.

For Example:

Dim MyNum As Double
Dim MyIBNumStr As String
Dim MyNumStr As String
Const IBNumLen = 7 ‘ Length of numeric
Const IBNumPrec = 4 ‘ Precision of numeric
Const IBNumFieldLen = IBNumLen+2 ‘ Allow room for decimal point And sign

 MyIBNumStr = GetRecField(Lun, 0, IBNumFieldLen)
 MyNumStr = IBToStrNum(MyIBNumStr)
 If (MyNumStr <> “”) Then

 MyNum = Val(MyNumStr)
 End If

 29

Directory Status

Function DabStat(Dab As Long, Path As String) As String

Each Directory that a user has access to after connecting to CometLib is assigned a DAB
(Directory Access Block) and is numbered sequentially from 0 to 49. This method returns
the Directory Name and Path associated with the specified Dab. A NULL (“”) string may
be returned for a DBA that currently has nothing assigned to it. This is not considered
an error. The follow code demonstrates how to enumerate all of your DABs.

For Example:

 Dim Result As Long
 Dim DataBuff As String
 Dim Path As String
 Dim AllDabs As String

 On Error GoTo BadDab
 For Result = 0 To 49
 DataBuff = CometDB.DabStat(Result, Path)
 If (DataBuff <> "") Then _
 AllDabs = AllDabs + Chr(10) + "(" + _

Right(Str(Result + 00), 2) + ") " + DataBuff + ":" + Path
 Next Result

 MsgBox "Directories:" + Chr(10) + Chr(10) + AllDabs
 DabStatTest = True
 GoTo Done

BadDab:
 DabStatTest = False
 MsgBox "DabStat Error: " & CometDB.GetLastErrorString

Done:

 30

Error Handling

GetCometExcpString

Function GetCometExcpString(Excp As Long) As String

This methods returns the ASCII string associated with the specified Comet exception.

For Example:

 On Error Goto ErrorFunc
 .
 .
 .
ErrorFunc:
 MsgBox “You got a Comet error: ” & GetCometExcpString(LastCometError)
End Sub

GetLastErrorString

Function GetLastErrorString() As String

This method returns a pre-formatted error string following a CometLib error. This
string may be more useful under certain circumstances because it may contain additional
information about an error.

For Example:

 On Error Goto ErrorFunc
 .
 .
 .
ErrorFunc:
 MsgBox “Error: ” & GetLastErrorString()
End Sub

 31

Properties

IsConnected

IsConnected As Boolean (read-only)

This property will have a value of True if CometLib is currently connected to Comet,
False if not.

LastCometError

LastCometError As Long (read-only)

This property contains the last Comet error number generated by CometLib. A return
value of (-1) would indicate that the last error generated was not a Comet (��������	
�����
���������
����) error but was some other generic system error (see LastError).

LastError

LastError As Long (read-only)

This property contains the last error of any kind that was generated by CometLib.
Although most of the time errors are caused by a file system exception (LastError =
��������	
����), occasionally an error will be generated for other reasons.

 32

CometFileStat Object

Properties

AccessDate As String (read-only)
Attributes As Long (read-only)
CreateDate As String (read-only)
DataFileSize As Long (read-only)
Directory As String (read-only)
ExtractCount As Long (read-only)
FileType As Long (read-only)
KeyFileSize As Long (read-only)
KeySize As Long (read-only)
Locked As Boolean (read-only)
ModifyDate As String (read-only)
NextFile As String (read-only)
RecordSize As Long (read-only)
UserCount As Long (read-only)

 33

CometErrors Object

Enums

excp02EndOfFile
excp03DiskFull
excp04KeyRequired
excp05DirRequired
excp06NoDiskSpace
excp07LockViolation
excp10FileNotAvailable
excp11FileNotFound
excp12FileExists
excp13DOSFileExists
excp24RenameSameDisk
excp26DOSEndOfFile
excp27DOSCallError
excp28WriteProtected
excp29DriverError
excp30DeviceInoperable
excp31DeviceUnavailable
excp32KeyNotFound
excp33Extracted
excp34LunInUse
excp35NoFileOpen
excp36FileIsOpen
excp37NoPermission
excp38InvalidFunction
excp43NoExtensionAllowed
excp44BufferOverflow
excp45InvalidParameter
excp46NonNumericData
excp47ParamTooLarge
excp48InvalidCreateParameter
excp49InvalidLun
excp53InvalidFileAccess
excp54InvalidFileFunction
excp56KeyFoundOnInsert

 34

CometFileTypes Object

Enums

ftSequential
ftContiguous
ftKeyed
ftText
ftProgram

 35

CometLibErrors Object

Enums

clibNoError = 0 ‘ No error
clibNoFileSystem = 1 ‘ CFAM not running
clibLoginRefused = 2 ‘ Login refused by CFAM
clibSharedMemory = 3 ‘ Couldn't create shared memory
clibControlWinError = 4 ‘ Error creating control window
clibBufferBusy = 5 ‘ Buffer was busy during send
clibLinkTimeout = 6 ‘ CFAM Link timeout error - gone?
clibNoCOnnection = 7 ‘ Connection to CFAM not established
clibShortBuffer = 8 ‘ Insufficient bytes returned from CFAM
clibCometError = 9 ‘ A Comet FS error occurred
clibDOSError = 10 ‘ Error in a DOS function
clibUserAborted = 11 ‘ User (app) sent an abort
clibLoginFailed = 12 ‘ Login refused because Comet is not connected
clibNoLicense = 13 ‘ CometLib server is not licensed

